Hamiltonian walks on Sierpinski andn-simplex fractals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Transitions on Sierpinski Fractals

The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We present a numerical study, based on the Monte Carlo method in conjunction with the finite size scaling method, of the critical properties of the Ising model on a two dimensional deterministic fractal lattice of Hausdorff dimension dH = ln 8/ ln 3 = 1.89278926.... We give evidence of the ex...

متن کامل

Random Walks on Graphical Sierpinski Carpets

We consider random walks on a class of graphs derived from Sierpinski carpets. We obtain upper and lower bounds (which are non-Gaussian) on the transition probabilities which are, up to constants, the best possible. We also extend some classical Sobolev and Poincar e inequalities to this setting.

متن کامل

Random walks on the Sierpinski Gasket

The generating functions for random walks on the Sierpinski gasket are computed. For closed walks, we investigate the dependence of these functions on location and the bare hopping parameter. They are continuous on the infinite gasket but not differentiable. J. Physique 47 (1986) 1663-1669 OCTOBRE 1986, Classification Physics Abstracts 05.40 05.50 1. Preliminaries and review of known results. C...

متن کامل

Fractals Meet Fractals: Self-Avoiding Random Walks on Percolation Clusters

The scaling behavior of linear polymers in disordered media, modelled by self-avoiding walks (SAWs) on the backbone of percolation clusters in two, three and four dimensions is studied by numerical simulations. We apply the pruned-enriched Rosenbluth chain-growth method (PERM). Our numerical results yield estimates of critical exponents, governing the scaling laws of disorder averages of the co...

متن کامل

Interacting Linear Polymers on Three–dimensional Sierpinski Fractals

Using self–avoiding walk model on three–dimensional Sierpinski fractals (3d SF) we have studied critical properties of self–interacting linear polymers in porous environment, via exact real–space renormalization group (RG) method. We have found that RG equations for 3d SF with base b = 4 are much more complicated than for the previously studied b = 2 and b = 3 3d SFs. Numerical analysis of thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2005

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/38/25/006